Feb 032014
 

Not only is Fargo cold for six months of the year but once inside the air is dry. I can feel my skin dry up and start to itch. We make sure our humidifiers are working. They’re almost as important as our furnace. But my shins aren’t the only reason to humidify the air. Machines work better, wood doesn’t shrink or crack, and optimal humidity will even keep the doctor away. Gary L. Berlin in the February issue of Engineered Systems, writes on the topic in his article, “Restoring The Low Limit For Indoor Relative Humidity.”

Berlin describes the research history into humidity and health. He covers the what the industry has done to through its ASHRAE established standards to keep humidity at recommended level. And how more work needs to be done to keep indoor relative humidity from falling too low.

See this Sterling Humidity Chart. A decrease in bar width indicates decrease in effect.
Source: ASHRAE, adapted from Sterling et al., 1985.  Lennox.com

Sterling Chart (Optimum relative humidity range to minimize harmful contaminants)

In the early 1980s, Elia Sterling of the University of Vancouver did an extensive study of previously published research concerning indoor relative humidity and its effect on the occupants of an indoor space. This study established that both high and low relative humidity levels had a deleterious and costly effect on the health and productivity of the occupants of a facility as related to bacteria, viruses, fungi, dust mites, respiratory infections, allergies, asthma, and ozone in the workplace, schools, and home.

Continue reading »

Jan 052014
 

In the new issue of Engineered Systems, Doug Lucht, writes up his experiences troubleshooting an Air Handling Unit at an art museum. He describes the steps he took to locate the problems in an air handling system that never worked properly. The facility had to turn on the chillers as early as March with sub 45-degree temperatures, when the economizers should have been taking care of the building. I love a good mystery and it points out- facilities should not just except poor performance of their equipment but should get to the bottom of it. Solutions were found, Lucht writes…

Once the booster fan was installed, AHU-9 could fully economize. The museum could now keep their chillers off further into the spring and shut them down earlier each fall. They were also able to completely abandon the roof-mounted chiller that served the chilled water fan coil units. Shortly after implementing the solutions, the museum received a check from their utility provider, which made the facility manager look like a hero to the museum curators.

This story also illustrates why cobbling together new and old equipment isn’t always the best way to save money. It demonstrates there are small upgrades that can make big changes to the facility’s comfort and bottom line.

VBA-18 to 190 Ventasen Booster Fan

Ventasen Booster Fan
Product# VBA-18 to 190.
Airflow:144-1900CMH